
11 Thermodynamique des processus irréversibles

Grâce à la thermodynamique des procédés irréversibles, il sera alors pos-
sible d’unifier les lois phénoménologiques de Fourier, d’Ohm et de Fick en se
basant sur des relations phénoménologiques linéaires. On utilisera alors des
forces et des courants généralisés qui autorise alors les effets croisés.

11.1 Relations phénoménologiques linéaires, réaction chim-
ique et frottement visqueux

Lorsqu’on se concentre sur l’évolution thermodynamique irréversible on
peut écrire les termes de densité de puissance comme le produit de forces
généralisées et de densités de courants généralisés:

σS =
1

T

(∑
i

Fiji +
∑
α

Fα · jα (124)

où Fi est la force de courant généralisé scalaire, ji est le la densité généralisé
scalaire et Fα est la force généralisé vectorielle. On notera le gradient ther-
mique FS = −∇T et le gradient électrochimique FA = −∇µA − qA∇φ

Au voisinage d’un état d’équilibre les densités de courants généralisés peu-
vent être exprimés comme des applications linéaires des forces généralisées:

σS =
1

T

(∑
ij

Fi(LijFj) +
∑
α,β

Fα · (Lαβ · Fβ)
)
⩽ 0 (125)

ou li,j est la composante scalaire et αβ est la composante tensorielle.
Ensuite, comme dans la partie 2.2, nous utiliserons le renversement du

temps T(Fi) = ϵiFi avec ϵi = ±1. On note le champ magnétique B.
On trouve les Composantes des matrices d’Onsager:

T(Lij(S, {nA}, q)) = Lij(S, {nA}, q) (126)

T(Lαβ(S, {nA}, q,B) = (Lαβ(S, {nA}, q, -B) (127)

ce qui est la relations de réciprocité d’Onsager-Casimir.
Les Relations linéaires scalaires nous donnent qu’au voisinage d’un état

d’équilibre local, les forces scalaires Fi sont suffisamment petites et les densités
scalaires de courant ji peuvent être développées au 1er ordre en termes des
forces Fj : ji =

∑
j LijFj . Lorsque l’on a i = a on peut alors écrire l’affinité

chimique et la densité des taux de réaction Fa = Aa et ja = ωa et lorsque i = f
on a le taux d’expansion et la contrainte scalaire Ff = ∇ · v et jf = τ alors la
réalisation linéaire scalaires nous donne:

ωa =

n∑
b=1

 LabA + Laf∇ · v τ =

n∑
b=1

 LfbA + Lff∇ · v (128)
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On peut alors enfin écrire la matrice d’Onsager comme:
ω1

...
ωn

τfr

 =


L11 . . . L1n L1f

...
. . .

...
...

Ln1 . . . Lnn Lnf

Lf1 . . . Lfn Lff




A1

...
An

∇ · v

 (129)

En utilisant les relations linéaires vectorielles on peut voir qu’au voisi-
nage d’un état d’équilibre local, les densités vectorielles de courant j peuvent
être développées au 1er ordre en termes des forces Fβ . Alors:

jα =
∑
β

Lαβ · Fβ (130)

On écrira aussi le Gradient thermique et la densité de courant d’entropie pour
α = s comme Fs = −∇T et js puis le gradient électrochimique et densité de
courant de substance pour α = A comme A = −∇µA − qA∇φ et jA. On écrit
alors les Relations linéaires vectorielles comme:

js = Lss · (−∇T ) +

r∑
B=1

LsB · (−∇µB − qB∇φ) (131)

jA = LAs · (−∇T ) +

r∑
B=1

LAB · (−∇µB − qB∇φ) (132)

ce qui nous donne la matrice d’Onsager:
js
j1
...
jr

 =


Lss Ls1 . . . Lsr

L1s L11 . . . L1r

...
. . .

...
...

Lrs Lr1 . . . Lrr




−∇T
−∇µ1 − q1∇φ

...
−∇µr − qr∇φ

 (133)

11.2 Réactions chimiques et frottement visqueux

Les relations phénoménologiques linéaires scalaires décrivent l’irréversibilité
associée aux réactions chimiques entre les substances dans un milieu continu.
Pour un volume constant, on trouve la relation linéaire scalaire:

ωa =

n∑
b=1

Lab(s, {nA}, q)Ab (134)

et en absence de réaction chimique (ωa = 0) on trouve la relation linéaire
scalaire:

τ = η(s,nA, q)∇ · v (135)

qui lie alors la contrainte mécanique scalaire τ décrivant le frottement interne
au taux d’expansion ∇ · v à travers la viscosité volumique.
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11.3 Transport

les relations phénoménologiques linéaires vectorielles décrivent l’irréversibilité
associée au transport de chaleur dans un milieu continu. On peut énoncer la loi
de fourrier et l’effet Righi-Leduc respectivement comme:

jQ = −κ(s,nA, q)∇T → ∇T = −κ−1(s,nA, q)jQ (136)

∇T = κ−1
RL(s,nA, q)(jQ × B̂) où B̂ =

B

||B||
(137)

On note la diffusivité thermique λ = κ/ce avec ce = ∂u
∂T

∣∣∣
ne

la densité de

capacité thermique. Dans un métal homogène avec ∇κ = 0, on peut écrire
la loi de Fourier:

∇jQ = ∇ · (−κ∇T ) = −κ∇2T (138)

On trouve alors l’équation de la chaleur:

∂tT = λ∇2T selon Ox:
∂

∂t
T (x, t) = λ

∂2

∂x2
T (x, t) (139)

Figure 14: diffusion de chaleur dans
un barreau de métal

On va regarder un phénomène de dif-
fusion de chaleur dans une barre
comme montré dans la figure 14. On peut
écrire la température dans le barreau
comme:

T (x,T ) =
C√
4πλt

exp− x2

4λt
(140)
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